The Category of Linear Codes
نویسنده
چکیده
| In the late 50s Slepian introduced a structure theory for linear, binary codes and proved that every such code was uniquely the sum of indecomposable codes. He had hoped to produce a canonical form for the generator matrix of an indecompos-able code so that he might read oo the properties of the code from such a matrix, but such a program proved impossible. We here work over an arbitrary eld and deene a restricted class of inde-composable codes | which we call critical. For these codes there is a quasi-canonical form for the generator matrix. Every inde-composable code has a generator matrix that is obtained from the generator matrix of a critical, indecomposable code by augmentation. As an application of our structure theory we illuminate the perfect linear codes, giving, for example, a \canonical" form for the generator matrix of the ternary Golay code.
منابع مشابه
Cyclic Orbit Codes with the Normalizer of a Singer Subgroup
An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...
متن کاملLinear codes with complementary duals related to the complement of the Higman-Sims graph
In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7, 11$ defined by the 3- 7- and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100. With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملOptimal Linear Codes Over GF(7) and GF(11) with Dimension 3
Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...
متن کاملComputation of Minimum Hamming Weight for Linear Codes
In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$ which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...
متن کاملA general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Information Theory
دوره 44 شماره
صفحات -
تاریخ انتشار 1998